Optimizing Hydroponic Rice Production as a Solution for Urban Food Security

Authors

  • Iskandar Umarie Universitas Muhammadiyah Jember
  • Oktarina Oktarina Universitas Muhammadiyah Jember
  • Wiwit Widiarti Universitas Muhammadiyah Jember
  • Bejo Suroso Universitas Muhammadiyah Jember
  • Fiana Podesta Universitas Muhammadiyah Bengkulu

Keywords:

Hydroponic Rice, Urban Food Security, Limited Agricultural Land, Agricultural Innovation, Urban Agriculture, Food Security

Abstract

Food security in urban areas represents a critical challenge alongside population growth and declining agricultural land. One potential solution is the optimization of hydroponic rice production. This method enables rice cultivation without soil, utilizing nutrient solutions and controlled irrigation systems. This study aims to assess the effectiveness of hydroponic rice production in an urban context. The research applies the Nutrient Film Technique (NFT) hydroponic system to cultivate superior rice varieties. Parameters measured include plant growth, yield, water use efficiency, and the quality of rice produced. Results demonstrate that hydroponic rice production can achieve yields equivalent to conventional methods while utilizing water far more efficiently. Primary challenges include optimizing nutrient formulations, pest control, and scaling up production. Nevertheless, hydroponic rice shows significant potential as an alternative food production method in urban areas with limited land. Broader implementation could contribute to urban food security and support sustainable agriculture

References

Al-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings, 8(2), 24. https://doi.org/10.3390/buildings8020024

Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6), 6879–6891. https://doi.org/10.3390/ijerph120606879

Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054

Bren d'Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K. H., ... & Seto, K. C. (2017). Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences, 114(34), 8939–8944. https://doi.org/10.1073/pnas.1606036114

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Despommier, D. (2013). Farming up the city: the rise of urban vertical farms. Trends in Biotechnology, 31(7), 388–389. https://doi.org/10.1016/j.tibtech.2013.03.008

Dutko, P., Ver Ploeg, M., & Farrigan, T. (2012). Characteristics and influential factors of food deserts. USDA-ERS Economic Research Report, (140). https://dx.doi.org/10.2139/ssrn.2114984

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199–4224. https://doi.org/10.3390/su7044199

Grunert, K. G., Sonntag, W. I., Glanz-Chanos, V., & Forum, S. (2018). Consumer interest in environmental impact, safety, health and animal welfare aspects of modern pig production: Results of a cross-national choice experiment. Meat Science, 137, 123–129. https://doi.org/10.1016/j.meatsci.2017.11.022

Hirschmann, R. (2021). Agriculture sector in Indonesia - statistics & facts. Statista. https://www.statista.com/topics/5984/agriculture-in-indonesia/

Jürkenbeck, K., Heumann, A., & Spiller, A. (2019). Sustainability matters: Consumer acceptance of different vertical farming systems. Sustainability, 11(15), 4052. https://doi.org/10.3390/su11154052

Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2017). Opportunities and challenges in sustainability of vertical farming: A review. Journal of Landscape Ecology, 10(2), 35–60. https://doi.org/10.1515/jlecol-2017-0016

Kozai, T., Niu, G., & Takagaki, M. (Eds.). (2019). Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press. https://doi.org/10.1016/C2016-0-00398-

Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., & Buttar, N. A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. Journal of Plant Interactions, 13(1), 338–352. https://doi.org/10.1080/17429145.2018.1472308

Lal, R. (2020). Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Security, 12(4), 871–876. https://doi.org/10.1007/s12571-020-01058-3

Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14. https://doi.org/10.1111/nyas.12540

Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016). Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of Visualized Experiments: JoVE, (113), 54317. https://doi.org/10.3791/54317

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71

Pinstrup-Andersen, P. (2018). Is it time to take vertical indoor farming seriously? Global Food Security, 17, 233–235. https://doi.org/10.1016/j.gfs.2017.09.002

Resh, H. M. (2013). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press. https://doi.org/10.1201/b13512

Sardare, M. D., & Admane, S. V. (2013). A review on plant without soil-hydroponics. International Journal of Research in Engineering and Technology, 2(3), 299–304. https://doi.org/10.15623/ijret.2013.0203013

Shamshiri, R. R., Kalantari, F., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., ... & Shad, Z. M. (2018). Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 11(1), 1–22. https://doi.org/10.25165/j.ijabe.20181101.3210

Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364–371. https://doi.org/10.5958/2455-7145.2018.00056.5

Specht, K., Siebert, R., Hartmann, I., Freisinger, U. B., Sawicka, M., Werner, A., ... & Dierich, A. (2014). Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values, 31(1), 33–51. https://doi.org/10.1007/s10460-013-9448-4

Sterne, J. A., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., ... & Higgins, J. P. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ, 366. https://doi.org/10.1136/bmj.l489

Touliatos, D., Dodd, I. C., & McAinsh, M. (2016). Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, 5(3), 184–191. https://doi.org/10.1002/fes3.83

Treftz, C., & Omaye, S. T. (2016). Comparison between hydroponic and soil systems for growing strawberries in a greenhouse. International Journal of Agricultural Extension, 4(1), 15–19.

United Nations, Department of Economic and Social Affairs, Population Division (2019). World Urbanization Prospects: The 2018 Revision. New York: United Nations. https://doi.org/10.18356/b9e995fe-en

Wells, G. A., Shea, B., O'Connell, D. A., Peterson, J., Welch, V., Losos, M., & Tugwell, P. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402

Downloads

Published

2025-04-23

How to Cite

Umarie, I., Oktarina, O., Widiarti, W., Suroso, B., & Podesta, F. (2025). Optimizing Hydroponic Rice Production as a Solution for Urban Food Security. International Journal of Agribusiness and Sustainable Development Research, 2(2), 15. Retrieved from https://gscjournal.com/IJASDR/article/view/73

Issue

Section

Articles